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Abstract
Many proteins, sugars and pharmaceuticals crystallize into two forms that are mirror images of
each other (enantiomers) like our right and left hands. Tellurium is one enantiomer having a
space group pair, P3121 (right-handed screw) and P3221 (left-handed screw). X-ray diffraction
with dispersion correction terms has been playing an important role in determining the
handedness of enantiomers for a long time. However, this approach is not applicable for an
elemental crystal such as tellurium or selenium. We have demonstrated that positive and
negative circularly polarized x-rays at the resonant energy of tellurium can be used to absolutely
distinguish right from left tellurium. This method is applicable to chiral motifs that occur in
biomolecules, liquid crystals, ferroelectrics and antiferroelectrics, multiferroics, etc.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is well known that there are two kinds of crystal structure
for low quartz and that visible light passing through a crystal
rotates the polarization plane clockwise or counterclockwise
according to the crystal structure. This phenomenon, optical
activity, can be found in natural organic substances such as
sugar, camphor or tartaric acid as well as in inorganic materials
like tellurium. Many of these molecules or crystals have
enantiomers, or stereoisomers whose atomic configurations are
mirror images of each other and are thus handed, like our
right and left hands. This geometrical property of crystals and
molecules is called as chirality.

Determination of the absolute structure has been one of the
important issues of crystallography. Among several methods

developed for the determination so far, x-ray diffraction with
the dispersion correction has been playing an important role
for a long time. The scattering length of x-rays for an atom can
be written as

f = f0 + f ′ + i f ′′, (1)

where f0 is the energy-independent x-ray scattering length
and the Fourier transform of the electron density around the
atom, f ′ and f ′′ are the real and the imaginary parts of the
dispersion correction, respectively. It has been known that
these correction terms depend on the wavelength or the energy
of x-ray beam and that the effect is significant at the absorption
edge of the resonant element. The term f ′′, which plays an
important role and has a negative value corresponding to the
expression of phase exp i(kz − ωt) for a plane wave, has the
minimum at the absorption edge of the resonant element, and
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some amount at the higher energies. Here the plane wave
propagates along the positive z direction with a wavenumber
k > 0 and an angular frequency ω > 0.

The method was first applied to solve the absolute
configuration of tartaric acid and carbohydrates by Bijvoet
et al in 1951 [1], and has since been developed extensively
and applied to the determination of the absolute configuration
of numerous biochemical compounds. For example the
multi-wavelength anomalous diffraction (MAD) has been
developed to determine the atomic configuration of complex
macromolecular systems in biology [2].

This method, however, is not applicable to determining
the chiral structure of an elemental material like selenium or
tellurium. In general, the unit-cell structure factor is given as
F = F ′ + iF ′′, and F ′ and F ′′ are the real and the imaginary
parts, respectively. The method described above uses the
fact that the ratio F ′′/F ′ changes as a function of the energy
because the structure factor is a sum of the scattering lengths of
non-resonant atoms and those of resonant atoms of which f ′′
significantly changes around the absorption edge. Therefore
the ratio of intensity of reflections for different Miller indices
hkl changes as a function of the energy. However, for an
elemental material, all the scattering length are uniformly
multiplied by the f ′′ and, accordingly, the ratio of intensity of
reflections for any Miller indices are independent of the energy.

In the literature, some techniques have been proposed
for the determination of the chiral structure of tellurium
using dispersion corrections [3, 4], however, no successful
experimental evidence has been so far reported to the best
of our knowledge. As far as we are aware, the only
successful measurement is the work of Brown et al, who
determined the chirality of tellurium using polarized neutron
diffraction, utilizing the polarization dependence of Schwinger
scattering [5]. They have found that the tellurium crystal which
shows laevorotatory optical rotatory power (the polarization
plane of the light rotates to the counterclockwise direction as
seen by an observer looking through the crystal towards the
light source) belongs to the space group P3121 (#152 right-
handed) but not to the space group P3221 (#154 left-handed).

Our method is quite different from the x-ray and neutron
diffraction techniques described above. We use resonant x-ray
diffraction for which the x-ray energy is close to an atomic
absorption edge, where the x-ray dichroism and the x-ray
scattering strongly depend on the polarization state of x-rays.
This property was demonstrated by Templeton and Templeton
in 1980 [6] and in 1982 [7]. Dmitrienko et al introduced the
anisotropy of x-ray susceptibility to describe the resonant x-
ray diffraction for non-magnetic materials, and summarized in
a recent review [8]. Lovesey et al formulated the resonant
x-ray diffraction for non-magnetic and magnetic media by
introducing the atomic tensor [9].

The crystal structure of tellurium is described by an
enantiomorphic space group pair, namely, P3121 (#152) and
P3221 (#154). Accordingly, it has handedness. Hereafter
we describe tellurium which belongs to P3121 as R Te (right
screw) and tellurium which belongs to P3221 as L Te (left
screw) according to their screw structures in the space groups.
Figure 1 shows the structure of R Te and L Te. The unit-cell

Figure 1. Structure of Te for space group #152 (right) and space
group #154 (left). Blue spheres represent Te atoms. Black lines show
the unit cell for each crystal. Screw lines for each panel are a guide
to eyes. An arrow shows the c axis of these structure.

parameters of tellurium at 300 K are a = 4.46 Å, c = 5.93 Å.
In space group P3121 (R Te), the atomic position Te is at 3a (x ,
0, 1

3 ) with x = 0.263 [10]. There are three Te atoms in a unit
cell. The difference between space group P3121 and P3221
is simply on the stacking sequence of atomic planes along the
c axis. The sequence for each space group is in the opposite
direction.

In conventional x-ray diffraction, none of the terms in
equation (1) depends on the polarization state of x-ray beam.
Therefore the scattering length of Te atoms in plane 0 is
equivalent to those of plane 1 and plane 2 and the minimum
unit for reflection 00l is c

3 . Thus, 00l, l = 3n (n is an
integer), is observed and reflection 001 is forbidden because
there are two planes between plane 0 and plane 3 and the unit-
cell structure factor is cancelled out by taking a sum. However,
the resonant x-ray diffraction in the vicinity of the absorption
edge of the target element depends strongly on the polarization
state of x-rays. Therefore the scattering length of Te atoms in
plane 0 is not equivalent to those of plane 1 and plane 2 any
more. In this case, the minimum unit for reflection 00l is c,
thus reflection 001 is observable.

The relations between the optical activity and the crystal
structure for many materials has been intensively discussed by
Glazer et al [11]. Nomura has reported that tellurium shows a
strong optical dextro (right)- and laevo (left)-rotatory power for
the infrared radiation [12]. However, the relationship between
the sense of rotatory power and the structural chirality had been
unknown until the neutron diffraction work [5].

We have shown that circularly polarized x-rays differen-
tiate the crystal chirality by coupling to the crystal screw axis
in low quartz [13, 14]. However, the results are not sufficient
to determine the structural chirality by themselves because the
mixture of two resonant processes gives a complicated theoret-
ical formula and prevents us from determining the sign of chi-
rality. Here we use the term ‘structural chirality’ and concern
ourselves with the sign of chirality in spaces group which have
the screw axes labelled right-handed (31, 41, 61, 62) and left-
handed (32, 43, 65, 64). We aim to distinguish one handedness
from its inverse for a single crystal for which the handedness is
unknown.

In the present paper, we demonstrate that circularly
polarized x-rays provides a sufficient and elegant tool to
determine the sign of chirality of crystals absolutely with the
resonance effect described only by the E1E1 process. Here we
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Figure 2. XAS obtained by the total fluorescence yield in the
vicinity of Te L1 absorption edge.

present the results of resonant x-ray diffraction on tellurium
crystal and show that they give unambiguous evidence to
determine the structural chirality.

2. Experiment and results

The experiment has been carried out on the beamline I16 at
the Diamond Light Source, UK. The tellurium sample, cut
to 5 mm × 4 mm × 5 mm in size was mounted on a Kappa
diffractometer. The surface of the sample was normal to the
c axis. The chirality of the sample was unknown. First
we determined the a∗ axis, measuring the intensity of six
reflections 101, 011, 1̄11, 1̄01, 01̄1, and 11̄1. In principle we
cannot fix the a∗ axis as we do not know the space group. The
reason is as follows. Each of these six reflections has the same
Bragg angle, but the intensity is not equivalent. Among them,
three reflections 101, 1̄11, 01̄1 are stronger, and the others are
weaker for R Te, however, this relation of intensity is opposite
for L Te. As we show later, our sample is R Te. Here for
convenience we suppose that the sample is R Te and we fix the
axes a, b, and c by choosing one of three stronger reflections
among the six reflections and defining the Miller index of the
reflection for example as 101. This definition does not depend
on the determination of the chirality, of course.

2.1. Energy scans

Figure 2 shows the x-ray absorption spectrum (XAS) obtained
in the total x-ray fluorescence yield mode in the vicinity of the
Te L1 absorption edge. We have measured XAS in the vicinity
of Te L2 and L3 absorption edges (not shown), however, only
XAS at the L1 absorption edge shows a sharp peak. This is
because the 4d band in tellurium is fully filled and the resonant
2p ↔ 4d is suppressed while the 5p band is not fully filled and
the resonant 2s ↔ 5p is allowed.

The general diffraction geometry is illustrated in the inset
of figure 3. The scattering plane is spanned by vectors ki

and kf, which are the propagation vectors of the incident
and diffracted beams, respectively. The σ and σ ′ are linear

Figure 3. Energy spectra of forbidden reflection 001 around L1 as a
function of energy and azimuth angle �. Each line shows an energy
spectrum for an azimuth angle � which is scanned in a range from
� = −56.45 to −69.2. Lines are drawn with every two steps of � to
simplify the figure. Inset shows a schematic view of Bragg
diffraction with a right-handed coordinates x , y, and z.

components of x-rays perpendicular to the scattering plane for
the incident and diffracted beam, respectively (parallel to the z
axis), and their Stoke parameters [15, 16], which represents
the polarization of the x-ray beam, are P1 = P2 (helicity)
= 0, P3 = +1, whereas the π and π ′ are linear components
of x-rays parallel to the scattering plane for the incident and
diffracted beam, respectively, and their stoke parameters are
P1 = P2 = 0, P3 = −1. Here σ(σ ′), π(π ′), and ki(kf) has a
right-handed relation (σ̂ × π̂ = k̂i and σ̂

′ × π̂
′ = k̂f) as the x ,

y, and z axes has a right-handed coordinate system x̂ × ŷ = ẑ.
Each hat denotes the unit vector. The positive and negative
circularly polarized x-rays are expressed by helicity P2 = +1
and P2 = −1, respectively. The positive (negative) circularly
polarized x-rays are expressed by a sum of σ and π linear
polarization in which the σ component is advanced (behind)
in time by a phase π

2 to the π component and the spatial
trace of the electric field of the positive (negative) circularly
polarized x-rays at a point in time is a left (right)-handed screw,
respectively. The azimuthal angle� is a rotation of the sample
about the scattering vector k = kf − ki; opposite sign to [14]
and the positive direction is clockwise as viewed looking up
along the scattering vector k. Here the origin of the azimuth
angle� = 0 is defined by the direction of the reciprocal lattice
vector a∗ axis when it is parallel to the y axis illustrated in the
inset of figure 3.

We have successfully observed space group forbidden
reflections 001 and 002 in the vicinity of the L1 absorption
edge. Figure 3 shows the intensity of forbidden reflection 001
observed as a function of energy E and azimuth angle � in a
range from � = −56.45 to −69.2 with a 0.5◦ step. We find
that reflection 001 is accompanied by strong multiple scattering
effects which adds apparently random artefact to the spectra,
which vary rapidly with � . This well-understood effect can
be seen in figures 4 and 5 as well. The underlying resonant
reflection 001 at the L1 edge is observed as a single peak (the
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Figure 4. Integrated intensity of reflection 001 (panel (a)) and 002
(panel (b)) as a function of azimuthal angle� observed with the
incident beam at E = 4.94 keV. Closed and open circles represent
the integrated intensity of the σ ′–σ channel and π ′–σ channel for the
linearly polarized beam, respectively for reflection 001 and 002.
Each cosine curve shows a result of fit to data with functions
expressed by equation (2).

maximum is at E = 4.94 keV) with a shape (not the intensity)
that is independent of azimuth angle � .

2.2. Azimuthal angle scans

Resonant x-ray diffraction of space group forbidden reflections
depends on the geometry of the scattering system as well
as the energy of the x-ray beam. This is because resonant
diffraction depends on the polarization state of the x-ray beam,
and the unit-cell structure factor is described by a tensor. Hence
the azimuth angle scan gives important information about the
symmetry of the local structure of the resonant ions.

We have performed azimuthal angle scans for reflections
001 and 002 with and without a polarization analyser crystal,
and with (σ ) linear, and both positively and negatively
circularly polarized incident beams, at an energy E =
4.94 keV. The integrated intensity of reflections 001 and 002 as
a function of azimuthal angle � for linearly polarized incident
beam (σ ) with a graphite analyser is shown in figure 4. The
analyser 2θ angle 2θa = 94◦ for reflection 004 of graphite gives
an almost perfect polarization analysis (sin2 2θa = 0.995). We
find that each of the reflections 001 and 002 has a rather flat
function for the σ ′–σ channel while each has a cosine curve for
the π ′–σ channel. The ‘noisy’ structure for each azimuth scan
curves is assumed to be due to the strong multiple scattering
effect.

Figure 5. Integrated intensity of reflection 001 (a) and 002 (b) as a
function of azimuthal angle �, observed with the incident beam at
E = 4.94 keV and a circularly polarized beam. Closed and open
circles (triangles) represent the integrated intensity of the positive
and the negative circularly polarized beam for reflection 001 (002),
respectively. The difference intensity, (+)− (−), between two
polarizations of the incident beam for reflection 001 and 002 is
shown in panel (c). Each cosine curve shows a result of a fit to data
with functions expressed by equation (2).

The integrated intensity of reflections 001 and 002 as a
function of azimuthal angle � for circularly polarized incident
beam, and the difference between opposite states of helicity,
are shown in figure 5. The helicity of the incident beam,
represented by P2 = ±1, is switched with a diamond phase
retarder. Taking the difference between the two helicity
states eliminates the multi-scattering effect and gives smooth
azimuthal functions for both reflections 001 and 002 as shown
in panel (c). This is because multi-scattering is only very
weakly dependent on the sign of circular polarization and
cancels out by the subtraction.
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Table 1. Inferred values of Y0, A, and ψ of equation (2) obtained by
a fit to the experimental data. Here (+)− (−) shows the difference
data between two helicity (+) and (−).

Reflection Helicity Y0 × 105 A × 105 ψ (deg)

001 P2 = +1 4.38 ± 0.72 2.31 ± 0.10 −4.66 ± 0.8
001 P2 = −1 5.47 ± 0.74 −2.56 ± 0.10 −4.83 ± 0.8
001 (+)− (−) −1.09 ± 0.02 4.88 ± 0.03 −4.75 ± 0.1

002 P2 = +1 4.87 ± 0.49 −1.75 ± 0.07 5.29 ± 0.7
002 P2 = −1 3.10 ± 0.44 1.61 ± 0.06 3.62 ± 0.7
002 (+)− (−) 1.77 ± 0.02 −3.36 ± 0.02 4.49 ± 0.1

To analyse the azimuth scan data collected for reflection
00l, we adopt a function

I = Y0 + A cos{3(� − ψ)} (2)

to fit the azimuth scan data shown in figure 5, and summarize
the parameters Y0, A, and ψ in table 1. This function should
have three-fold symmetry because of the crystal structure.
Later we discuss the equation. The standard deviations of the
fit to the data for the positive and negative helicity are quite
large while those for the difference data shown in panel (c) are
small.

From the difference intensity of azimuth angle scans for
reflections 001 and 002, we find (i) that the 001 and 002
intensity difference data can be described by a symmetric
cosine curve with a small phase shift of ψ ∼ ±4.5◦, (ii) the
sign of which shift has an opposite sign for reflections 001 and
002 to each other, (iii) that the cosine curves of the difference
intensity for reflection 001 and 002 are anti-phase to each other
(the sign of parameter A is opposite to each other), and (iv) that
the average of the cosine curve (parameter Y0) for reflection
001 is negative while that for reflection 002 is positive. These
experimental results enable us to determine the chirality of our
Te sample absolutely.

3. Discussion

The intensity I of the resonant diffraction is described using
the Stokes parameters (0, P2, P3) as

I = 1
2 (1 + P3)(|Gσ ′σ |2 + |Gπ ′σ |2)
+ 1

2 (1 − P3)(|Gπ ′π |2 + |Gσ ′π |2)
+ P2 Im(G∗

σ ′πGσ ′σ + G∗
π ′πGπ ′σ ). (3)

Here Gμ′ν is the total resonant scattering amplitude, and μ′ and
ν are the polarization state of the diffracted and incident x-ray
beam, respectively. The third term represents the interference
between σ and π components of the resonant scattering
process for circularly polarized x-rays and plays a crucial role
for determination of the chirality by changing the sign coupling
with the helicity, P2. This interference does not appear for
conventional (Thomson) diffraction because there are no paths
to change the polarization state, i.e. Gπ ′σ = Gσ ′π = 0.

For multiple resonances we can write,

Gμ′ν =
∑

k

r (k)
F (k)
μ′ν

E −	k + i
2
k

=
∑

k

d(k)(E)F (k)
μ′ν, (4)

where k represents individual resonant events, E1E1, E1E2
etc, 	k , 
k , and r (k) represent the resonant energy, its width,
and the mixing parameter, respectively, and the scattering
amplitude Fμ′ν is

Fμ′ν =
∑

K

X (K )
μ′ν D(K )�(K ). (5)

In this expression,�(K ) represents the unit-cell structure factor
spherical tensor of rank K (K = 0 (monopole), K = 1
(dipole), etc) which is the sum of atomic multipoles related
to the resonant process, and X (K )

μ′ν describes conditions of the
incident and the diffracted beam. Orientation of the crystal,
with respect to states of polarization and the plane of scattering,
is accomplished by a rotation matrix D(K ). The theoretical
description is described in detail in [9, 14].

The structure factor for the enantiomorphic space group
pair #152 and #154 is fully described in [14]. Here we describe
the structure factor and the intensity for circularly polarized x-
rays briefly. As written in section 1, the difference between
the two space groups is on the stacking sequence of atomic
planes along the c axis. Te atoms locate at (−x , −x , 0), (x ,
0, ± 1

3 ), and (x , 0, ∓ 1
3 ) in a unit cell, respectively. Here the

upper and lower sign of 1
3 represent the space group #152 and

#154, respectively. We keep this sign notation for the following
discussion.

The most probable resonant process at the vicinity of the
absorption edge L1 of Te shown in figure 2 is the E1E1 event
(2s ↔ 5p). Atomic multipoles related to the E1E1 event
are 〈T (K )

Q 〉. Here rank K = 2 and the projection Q spans
−K � Q � K . We take the ion at site (−x , −x , 0) as
a reference and describe the atomic multipole 〈T (2)

Q 〉 with a
right-handed orthogonal quantization axes (ξηζ ). Here ξ axis
coincides with the diad axis of rotation symmetry through (−x ,
−x , 0) and the ζ axis coincides with the crystal c axis. Note
that our ξ axis lies in the plane spanned by reciprocal lattice
vectors a∗ (normal to direct vectors b and c) and b∗, with a∗
and the ξ axis subtending an angle of 30◦. Note, also, that the
geometry for the experimental origin of� = 0 is equivalent to
the geometry when the ξ axis is parallel to the z axis due to the
three-fold symmetry.

The unit-cell structure factor for #152 and #154, and
reflection 00l (l > 0) is found to be

�
(2)
Q = 〈T (2)

Q 〉{1 + e2π iQ/3e2π i(±l/3) + e−2π iQ/3e2π i(∓l/3)}. (6)

Here we find, for 00l reflections, the selection rule l + Q = 3n
for space group #152 and l − Q = 3n for space group #154,
where n is an integer. Space group allowed reflections satisfy
the condition Q = 0 and l = 3n. Note that equation (6)
appears to suggest that reversing the sign of l is equivalent
to reversing the sign of Q, and thus the helicity. However,
it should be remembered that such a reversal also requires a
transformation of the tensor T (K )

Q . The resulting scattering
amplitude does not respect the apparent connection between
the sign of l and the helicity of the crystal.

Accordingly the structure factors for reflection 001 for
space group #152 and space group #154 are represented
by a sum of 3〈T (2)

−1 〉 and 3〈T (2)
+2 〉, and a sum of 3〈T (2)

+1 〉

5
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and 3〈T (2)
−2 〉, respectively. It is interesting to note that the

relation between the structure factor and the space group is
interchanged for reflection 002. This is because the phase
factor in the calculation of the structure factor for reflection
001 and reflection 002 is opposite to each other. Finally, the
intensity of 001 for space groups #152 and #154 for the E1E1
resonant event is found to be

I = I0 + I1 cos(3�), (7)

I0 = cos2 θT 2
β + 1 + sin2 θ

2
{1 + sin2 θ + P3 cos2 θ

− 2νP2 sin θ}T 2
a , (8)

I1 = {2P3 sin θ + νP2 cos2 θ} cos θTaTβ. (9)

Here I0 and I1 is constant and cosine terms in the azimuth scan
(�), respectively, θ is the Bragg angle, Ta = 3

2 〈T (2)
+2 〉′, and

Tβ = 3
2 〈T (2)

+1 〉′′ are the atomic multipoles, (the single prime
and the double prime represent the real and the imaginary
parts of each atomic multipole, respectively). We introduce a
parameter ν = ±1 to label the chirality, of which sign depends
on the Miller indices 00l as well. For 001 reflection ν = +1
for space group #152 and ν = −1 for space group #154 while
for reflection 002 the sign is reversed. Note that the sign of
the P2 terms in equations (8) and (9) is opposite to those in the
equations described in [14] because we changed the definition
of the scattering vector k = kf − ki.

Let us analyse the azimuth scans shown in figures 4 and 5
using equations (7)–(9). Here experimental parameters θ , P2,
P3 are known: sin θ = 0.212 for reflection 001 and sin θ =
0.423 for reflection 002. For the circularly polarized beam,
P2 = ±1 and P3 
 0, to a good approximation, and for the
linearly polarized beam P3 = +1. Parameters Ta, and Tβ , and
ν are unknown. From the equations (8) and (9), the difference
between two helicity states P2 = ±1 is given as

I0(+)− I0(−) = −2ν sin θ(1 + sin2 θ)T 2
a (10)

I1(+)− I1(−) = +2ν cos3 θTaTβ. (11)

Moreover the intensity for the σ ′σ and π ′σ channels [14] are,

Iσ ′σ = T 2
a (12)

Iπ ′σ = cos2 θT 2
β + sin2 θT 2

a + sin 2θTaTβ cos(3�). (13)

First, we find that equations (12) and (13) explain the
azimuth scan data for the linearly polarized incident beam
shown in figure 4 quite well: the intensity for the σ ′σ channel
is almost flat, while the intensity for the π ′σ channel shows
a three-fold cosine curve. Second, we find that equation (7)
explains the azimuth scan data for the circularly polarized
incident beam shown in figure 5 except a small the phase shift
ψ found in equation (2). Here I0(+)− I0(−) 
 Y0(+)−Y0(−)
and I1(+)− I1(−) 
 A(+)− A(−) hold in an assumption that
the phase shift ψ in equation (2) is negligible. We suppose that
the small phase shift ψ is due to the parity-odd resonant events
like E1E2 or E1M1 as discussed in [14]. In these events, polar
multipoles 〈U (K )

Q 〉 are observable. This introduction changes
the equation (7) to

I = I0 + I1 cos(3�)+ I2 sin(3�), (14)

The explicit expressions are found in equations (6.1)–(6.10)
in [14].

Turning back to figure 5 and table 1, we find that the sign
of Y0(+)−Y0(−) is negative for reflection 001 and positive for
reflection 002 and that the sign of A(+)− A(−) is positive for
reflection 001 and negative for reflection 002. The former gives
ν = +1 and the latter gives νTaTβ > 0. The latter itself does
not give the sign of ν, however, we find that TaTβ > 0 from the
azimuth scans for the π ′σ channel of reflections 001 and 002
as shown in figure 4 using equation (13). Hence we deduce
ν = +1 from I1 as well. These results show that our Te sample
is R Te (space group P3121 #152). Moreover we can deduce
the information on the atomic multipoles Ta = 3

2 〈T (2)
+2 〉′, and

Tβ = 3
2 〈T (2)

+1 〉′′ from the numerical data in table 1. Reflections

001 and 002 give similar values of the ratio 〈T (2)
+2 〉′/〈T (2)

+1 〉′′ as
0.81 and 0.73, respectively.

Note if the incident beam does not have 100% circular
polarization and includes some amount of linear polarization
(P3) which keeps constant by switching the helicity, then,
we could use it to advantage. The sign of P2 changes not
only the sign of I1, but also the absolute value due to the
additional contribution of the linear polarization. Hence, we
know the chirality parameter from I1 without a polarization
analysis. Actually, this method has been applied to determine
the structural chirality of berlinite AlPO4 [17].

4. Optical rotatory power

We have performed an experiment on the optical rotatory
power measurement on the same Te sample as was used for
the resonant x-ray diffraction experiment. The infrared Fourier
transform spectrometer at BL43IR, SPring-8, was employed
for this task.

A sample, 1.3 mm thick, was placed between two
polarizers. The first one was used as a pass filter permitting
linear polarized light only, and the second one was used to
measure the rotation of the polarization. The angle of the
second polarizer was changed in a range from 0 to −150◦
by a −30◦ step. The negative sign corresponds to the
counterclockwise rotation. The transmittance spectra is shown
in panel (a) of figure 6. The wavenumber 2600 cm−1 is the
energy gap of tellurium.

The optical rotatory power is obtained by taking the
positions of the local maxima in these spectra. As shown in
panel (b) of figure 6, the sample shows clearly laevorotatory
since it rotates the light to the counterclockwise (to the left)
as seen by an observer looking through the crystal towards the
light source. The optical rotatory power γ at the wavenumber
ν̃ = 2000 cm−1 is 58 ± 3 (◦ mm−1). This value is similar to
the value 61 (◦ mm−1) obtained by Brown et al [5] and slightly
larger than the value 56.8 (◦ mm−1) obtained by Nomura [12].

Thus, we find that our Te sample which belongs to the
space group P3121 has the optical laevorotatory power. This
relationship between the sense of the structural chirality and
the sense of optical activity of Te agrees nicely with the result
obtained by the polarized neutron diffraction [5].
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Figure 6. (a) Transmittance spectra for Te as a function of wavenumber for the angle of the second polarizer in a range from 0◦ to −150◦.
(b) The optical rotatory power. Rotation angle derived from panel (a) is normalized with the thickness.

5. Summary

We have performed a resonant x-ray diffraction experiment on
a single crystal of tellurium which has an enantiomorphic space
group pairs P3121 and P3221 with circularly polarized x-
rays. We have observed the intensity of space group forbidden
reflections 001 and 002 at the L1 absorption edge of tellurium.
By taking the difference intensity between two helicity of
the circularly polarized x-ray beam, we have successfully
determined the chirality of our tellurium sample as space group
P3121 unambiguously.

We also have performed an experiment on the optical
rotatory power and found that our tellurium sample shows the
optical laevorotatory power. This relationship between the
sense of the structural chirality and the sense of optical activity
of Te is consistent with the result obtained by the polarized
neutron diffraction [5].

The advantage of our method is that the measurement
of intensity of only one space group forbidden reflection is
enough to determine the chirality. Thus, we have developed
a new method to absolutely determine the crystal chirality
(determination of one of an enantiomorphic space group
pair). The technique is generally applicable to chiral motifs
that occur in biomolecules, liquid crystals, ferroelectrics and
antiferroelectrics, multiferroics, etc.
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